164 research outputs found

    Geochemical variations in an alpine lake and watershed underlain by siliciclastic bedrock, Uinta Mountains, Utah

    Get PDF
    Journal ArticleA small watershed which includes several small lakes in the Uinta Mountains of northern Utah is underlain by monolithologic Precambrian siliciclastic rock with extremely limited buffering capacity. In spite of this, s\ stematic spatial and temporal variations in alkalinity, pH, and major elements occur in springs, small streams, and one lake within the watershed. Alkalinity changes by 3-fold over 1 km of vertical elevation within the watershed. Cations and silica show similar although less dramatic changes with respect to elevation. Silicate weathering seems to constitute the dominant mechanism of alkalinity generation. The water column in Marshall Lake shows significant seasonal stratification of temperature and chemical constituents. Vertical variation of alkalinity in the lake during the summer is related to the input of geochemically distinct water sources in the watershed. Vertical pH variations in Marshall Lake do not match alkalinity variations but instead are related to photosynthesis in the upper and middle portions of the water column. Thermal and chemical stratification is greater in the lake than in well-studied alpine lakes of the Sierra Nevada. Numerical hydrodynamic models suggest that temperature and chemical stratification of this Uinta Mountain lake can be attributed to lake depth (13 m vs more shallow depths of the Sierra lakes) or relatively weak wind shear stress. The combined watershed/lake study demonstrates the need for complete vertical water sampling in order to accurately characterize the geochemistry of deep (> 10 m) alpine lakes

    Relating P-band AIRSAR backscatter to forest stand parameters

    Get PDF
    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area

    Experimental Investigation of the Secondary and Backscatter Electron Emission From New Spacecraft Surface Materials

    Get PDF
    The emission of secondary and backscattered electrons influences spacecraft surface potentials and the surrounding plasma. Modern spacecraft use new materials for which secondary emission properties have been unavailable. In this work, the total electron yield (i.e., the sum of secondary and backscattered electron yields) was measured for niobium-C103 alloy, molybdenum Titanium, Zirconium, Molybdenum (TZM) alloy, tantalum-tungsten alloy, Elgiloy®, graphite lubricant (DAG 213®), and titanium nitride. The surface properties of tungsten were also measured for comparison with past test data. The materials were readied as spacecraft flight materials and temperature-treated ( annealed ) to predicted peak flight temperatures. The yield properties for 10 eV-5 keV incident electron energies for all samples were measured. Both unannealed and annealed states were tested, except DAG 213, which was only tested annealed. Three-parameter and four-parameter models were used to fit the secondary and backscattered electron yield data, respectively. The emitted electron energy distributions are also obtained and fit with a Chung-Everhart model for secondary electrons and a Gaussian function for backscattered electrons. The secondary and backscattered electrons\u27 current densities were calculated for different ambient plasma conditions. For ready reference, the normalized primary electron, secondary electron, and backscattered electron current densities versus ambient electron temperature were computed and plotted from 1 eV to 8 keV

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma

    Get PDF
    The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease
    corecore